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Abstract. We investigate properties of neural networks that use both ReLU and x2 as

activation functions and build upon previous results to show that both analytic functions
and functions in Sobolev spaces can be approximated by such networks of constant depth

to arbitrary accuracy, demonstrating optimal order approximation rates across all nonlinear

approximators, including standard ReLU networks. We then show how to leverage low
local dimensionality in some contexts to overcome the curse of dimensionality, obtaining

approximation rates that are optimal for unknown lower-dimensional subspaces.

1. Introduction

The number of parameters needed to approximate smooth high-dimensional functions,
Wn,∞([0, 1]d), within a prescribed ϵ accuracy in the ℓ∞ norm was lower bounded by [6] to have
a dependence on ϵ that is proportional to ϵ−d/n. [16] has subsequently shown that a simple feed-
forward neural network with ReLU(x) := max{0, x} nonlinear activation is nearly optimal in
terms of the number of parameters needed, requiring only c(n, d) = ϵ−d/n log(1/ϵ) parameters1,
see [16][Theorem 1]. Subsequently, [4] reduced the number of parameters needed by a feedfor-
ward neural network to achieve ϵ accuracy to being proportional to c(n, d) = ϵ−d/n log(log(1/ϵ))
by using trainable rational function as nonlinear activations, see [4][Theorem 4].

Here we further adapt the proof by Yarotsky to achieve the optimal dependence of ϵ−d/n

proven by [6], using a feedforward network that makes use of two nonlinear activations (hence-
forth referred to as bi-activation networks). Specifically, we allow some layers to use the ReLU
nonlinear activation to localize f(x) through a partition of unity, and the quadratic activation
x2 to allow for efficient computation of localized high degree polynomial approximations.

Specifically, following the notation of [6] and [16], we consider nonlinear approximation meth-
ods Mp(a) that have a continuous dependence2 on the p parameters a ∈ Rp and which approx-
imate high dimensional functions f(·) within the unit ball of the Sobolev space Wn,∞([0, 1]d),

(1.1) ||f ||Wn,∞([0,1]d) = max n∈|n|≤nesssupx∈[0,1]d |Dnf(x)|

2010 Mathematics Subject Classification. 37H05, 47B65, 60J05.
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1The function c(n, d) depends on the smoothness, n, and the dimension of f(x), but not on the desired

accuracy ϵ.
2The continuous dependence of Mn(a) on a is introduced in [6] to avoid space filling curves and can be

viewed as ensuring the parameters a can be learned from a sufficiently near estimate; for details see [6].
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where n = (n1, ..., nd) ∈ {0, 1, ...}d, |n| =
∑d

i ni and D
nf the respective weak derivative. The

foundational lower bound on the number of elements in any nonlinear approximation method
Mp(a) that depends smoothly on a ∈ Rp is given in Theorem 1.1.

Theorem 1.1 (Optimal non-linear approximation lower bound, [6]). For function f(x) with
||f ||Wn,∞([0,1]d) ≤ 1, and Mp(a) depending continuously on a ∈ Rp, approximating f(x) with
bound

inf
Mp(a),a

max
x∈[0,1]d

|f(x)−Mp(a)(x)| ≤ ϵ

then necessarily Mp(·) has p ≥ C1(d, n)ϵ
−d/n where C1(d, n) may depend on d and n, but not

on ϵ.

As a method to explain the value of depth in deep learning, [16] constructed a feed forward
networks with is near optimal order number of parameters as a function of approximation
accuracy ϵ. In particular,

Theorem 1.2 (Near optimal non-linear approximation with ReLU-networks, [16]). For func-
tion f(x) with ||f ||Wn,∞([0,1]d) ≤ 1, there exists MCY ,ReLU(a) formed as a feed-forward network

with at most CY = C2(d, n)ϵ
−d/n(1 + log(1/ϵ)) elements a ∈ RCY for which

min
a∈RCY

max
x∈[0,1]d

|f(x)−MCY ,ReLU (a)(x)| ≤ ϵ

where C2(d, n) may depend on d and n, but not on ϵ.

The feed-forward network MCY ,ReLU constructed in [16] has hidden layers hi+1 =
ReLU(Wihi + bi) for i = 0, . . . L with input h0 := x, Wi being matrices of width bounded
independent of ϵ, and depth L ≤ c(d, n)(log(1/ϵ)+1). The feed-forward network is constructed
analogously to the proof in [6] where there the input x ∈ Rd is partitioned into exponentially
many localized portions, each of which then has a local polynomial constructed to approximate
f(·). The ReLU nonlinear activation allows for partitions of the input space [0, 1]d and the
logarithmic depth is needed to construct high-degree local polynomial approximations using
the saw-tooth functions developed by Telgarsky [15]; for details, see [16].

Our main contribution here is a feed-forward network MCF ,bi−σ where the layers hi+1 =
σi(Wihi + bi) have non-linear activations σi(x) which are either ReLU(x) or x2 depending on
the layer. This choice of nonlinear activations is made to simplify the proof in [16] by retaining
the ability to localize Rd while more efficiently computing higher-order polynomial functions
with bounded depth L. Other choices of localizing and approximation activations are possible,
see the details of the proof of Theorem 1.3.

Theorem 1.3 (Optimal approximation order bi-activation networks). For function f(x) with
||f ||Wn,∞([0,1]d) ≤ 1, there exists MCF ,bi−σ(a) formed as a feed-forward network with CF =

C3(d, n)ϵ
−d/n elements a ∈ RCF for which

min
a∈RCF

max
x∈[0,1]d

|f(x)−MCF ,bi−σ(a)(x)| ≤ ϵ

where C3(d, n) may depend on d and n, but not on ϵ.

The Proof of Theorem 1.3 is given in Section 2.1, making use of a key lemma from the proof
of Theorem 1.2 by Yarotsky.

We further extend Theorem 1.3 in two separate directions, by considering f(x) to be analytic
or f(x) to be contained on the union of deff < d dimensional canonical subspaces of Rd.
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Theorem 1.4 (Optimal approximation order bi-activation networks: Analytic functions). Let
f(x) be an analytic function on [0, 1]d, characterised [1] by

(1.2) sup
x∈[0,1]d

∣∣∣∣∂nf∂xn
(x)

∣∣∣∣ ≤ C
|n|+1
f n! for all n

where Cf depends on the particular choice of f(x). Then for any d, and ϵ ∈ (0, 1), there exists

MCA,bi−σ(a) formed as a feed-forward network with CA = C4(d,Cf )

(
(2ϵ)

log− 1
2

(
2d

ϵ

)
log

d
2
(
1
ϵ

))
elements a ∈ RCA for which

min
a∈RCA

max
x∈[0,1]d

|f(x)−MCA,bi−σ(a)(x)| ≤ ϵ

where C4(d,Cf ) does not depend on ϵ.

Theorem 1.4 differs from Theorem 1.3 primarily in the lack of dependence on smoothness n
as the number of parameters CA needed in the network has been minimized over all admissible
n. The consequence of choosing the optimal smoothness n is that the ϵ and d dependence of
the number of parameters CA decreases from (ϵ−1/n)d to predominantly log(1/ϵ)d/2.

Next, for deff < d we define the canonical subspace of [0, 1]d of dimension deff; that is

x ∈ χd
deff,e

:= {x ∈ [0, 1]d : with if i /∈ e, xi = 0}.

Where e is a subset of {1, . . . , d}, with deff elements. Iddeff
is the collections of all e. Then if

f(x) is nonzero on only one known subspace χd
deff,e

Lemma 2.2 holds. In the case that f(x) is

nonzero on the union of all
(

d
deff

)
such subspaces

χ̄d
deff

:=
⋃
e∈I

χd
deff,e

,

the number of parameters CM needed to compute an ϵ approximation of f(x) over one or all
canonical subspaces is given by CM = C5(d, deff, n)ϵ

−deff/n) (see Lemma 2.2 and Theorem 1.5).

Theorem 1.5 (Optimal approximation order bi-activation networks: low-dimensional sub-
spaces). For function f(x) with ||f ||Wn,∞([0,1]d) ≤ 1 where x is restricted to χ̄d

deff
, there exists

MCM ,bi−σ(a) formed as a feed-forward network with CM = C5(d, n)ϵ
−deff/n elements a ∈ RCM

for which the error restricted on χd
deff

is

min
a∈RCM

max
x∈χ̄d

deff

|f(x)−MCM ,bi−σ(a)(x)| ≤ ϵ

where C5(d, n) may depend on d and n, but not on ϵ.

This restricted subspace model is motivated by natural image inputs with prescribed com-
pression on a known orthogonal basis, such as JPEG compression. This union of subspace
model χ̄d

deff
is also widely used in the theory of compressed sensing, see [7] and references

therein, and has also been used to increase robustness against adversarial attacks on image
classification by [9].
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2. Approximation power of bi-activation networks

The proof of Theorem 1.3 being adapted from that 1.2 in [16], an understanding of the former
is essential in order to explain the latter.

As mentioned previously, [16] first partitions the input x ∈ [0, 1]d into exponentially many
localized portions using a partition of unity {ϕm}, where each ϕm is piecewise linear and
expressible by a ReLU network with a constant number of parameters (see Proposition 1 in
[16]). The aim is then to approximate the function f by Taylor polynomials locally, giving the
following representation for an approximation of f .

Lemma 2.1 ([16]). Let ϵ > 0 be arbitrary and f ∈Wn,∞([0, 1]d). Then there exists a function

f̃ expressible as

f̃(x) =
∑

m∈{0,...,N}d

∑
n:|n|<n

am,nϕm(x)
(
x− m

N

)n
,

where am,n ∈ R, |am,n| ≤ 1, {ϕm}m∈{0,1,...,N}d is a partition of unity such that each ϕm is given

by a product of d piecewise linear univariate factors. Furthermore, f̃ is such that

|f(x)− f̃(x)| ≤ 2ddn

n!

(
1

N

)n

max
n:|n|=n

ess supx∈[0,1]d |Dnf(x)|.(2.1)

The proof of this lemma is included in the appendix for completeness.
Showing that ReLU networks can approximate monomials (and, in turn, polynomials) would

then complete the proof. Indeed, in Section 3.1 of [16], the author does so by first showing that
f(x) = x2 can be approximated by a ReLU network of complexity O(ln(1/ϵ)). Using the
following identity to recover multiplication from squaring:

(2.2) xy =
1

2

(
(x+ y)2 − x2 − y2

)
the author then shows how a ReLU network of complexity O(ln(1/ϵ)) can in fact approximate

terms of the form ϕm(x)
(
x− m

N

)n
.

Lastly, note that in lemma 2.1, f̃ is a linear combination of at most dn(N + 1)d such terms.
N is a smoothness parameter that can be chosen so that the upper bound in (2.1) becomes

|f(x)− f̃(x)| < ϵ. In Yarotsky’s case, this corresponds to choosing

(2.3) N = N(ϵ, d, n) =

⌈(
n!

2ddn
ϵ

)−1/n
⌉
,

which also yields

dn(N + 1)d = dn
(

n!

2ddn
ϵ

)−d/n

= O(ϵ−d/n),

and the final ReLU network used approximate f therefore consists of CY = O(ϵ−d/n ln(1/ϵ))
parameters due to the log(1/ϵ) depth needed to approximate x2 within ϵ using a ReLU network.

2.1. Proof of Theorem 1.3, Optimal approximation order bi-activation networks.

Proof of Theorem 1.3. Let f̃ be the approximation to f given by Lemma 2.1. Since f is in the
unit-ball in Wn,∞, maxn:|n|=n ess supx∈[0,1]d |Dnf(x)| ≤ 1. Choosing the same N as in 2.3, we

find that ||f − f̃ ||∞ ≤ ϵ.
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Figure 1. Multiplication of k elements (depicted in black) using O(k) subnet-
works (depicted in red) each of constant size (independent of d and n), giving
a network of depth O(ln2(k)). Here, k = 8.

In contrast to ReLU networks, we claim that bi-activation networks can represent terms of
the form ϕm(x)(x−m/N)n exactly using a constant number of trainable parameters. Indeed,
each of these terms is itself a product of at most d+n− 1 piecewise linear univariate factors: a
product of d functions defining each ϕm and at most n−1 functions xk−mk/N . These products
can be implemented by a bi-activation network with a complexity of the order of (n + d) and
depth of the order of log2(n+ d) (in both cases, O(1) with respect to ϵ), by repeatedly pairing
up the terms and multiplying them in tournament fashion (see figure 1). The multiplication of
two terms can be achieved by a bi-activation network of constant size using (2.2)3.

Therefore, f̃ can be written by a bi-activation networkMCF ,bi−σ(a) with CF = O(dn(N+1)d)
parameters as follows. The network uses parallel subnetworks that each compute a term in the
series defining f̃ , and computes the final output by summing the outputs of these subnetworks,
weighted with the appropriate am,n. Since there are not more than dn(N + 1)d subnetworks,
CF = C3(d, n)d

n(N + 1)d weights and computation units, for some constant C3(d, n). For our
choice of N in (2.3) to achieve an ϵ accurate approximation, CF = O(ϵ−d/n). □

2.2. Proof of Theorem 1.4, Optimal approximation order bi-activation networks:
Analytic functions.

Proof of Theorem 1.4. Once again, let f̃ be the approximation to f given by Lemma 2.1, noting
that f ∈ Wn,∞([0, 1]d) for all n as it is analytic. Then applying the bound on |f(x) − f̃(x)|
given by the same Lemma and the bound on smoothness for analytic functions (1.2), we find
that

|f(x)− f̃(x)| ≤ 2ddn

n!

(
1

N

)n

max
n:|n|=n

ess supx∈[0,1]d |Dnf(x)|

≤ 2ddn

n!

(
1

N

)n

Cn+1
f n!

≤ 2ddn
(
Cf

N

)n+1

,

3More specifically, we can use a network with activation function x2 which has one hidden layer. The inputs
x and y connect fully to the hidden layer with three nodes, and weights [0, 1], [1, 0] and [1, 1]. The three nodes
are connected to the output with weight [−1/2,−1/2, 1/2].
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where Cf is a constant depending on f .
Notice that in this case the result holds for all n. This means that, when picking N , we can

optimize over n to minimize the number of trainable parameters needed by our network. To
begin with, choosing

(2.4) N1 = N(Cf , ϵ, d, n) =
1

C

⌈( ϵ

2ddn

)−1/(n+1)
⌉

we get that ||f − f̃ ||∞ ≤ ϵ.

Arguing in the exact same manner as in the proof of Theorem 1.3, we know that f̃ can be
written as a bi-activation neural network MCA,bi−σ(a). The total number of parameters CA
then needed by the network to represent f̃ is equal to

(2.5) CA = C4(Cf , n, d)d
n(N + 1)d

for some constant C4 = C4(Cf , n, d) that does not depend on ϵ. Substituting the choice of N
in (2.4) in (2.5) and minimizing over n, we find that CA is minimal for

(2.6) nmin =

√
d
(
d log(2) + log

(
1
ϵ

))
log(d)

.

Substituting (2.6) and (2.4) into (2.5), gives us

CA = C4 · 2
d3/2

√
log(d)√

d log(2)+log( 1
ϵ ) ϵ

√
d
√

log(d)√
d log(2)+log( 1

ϵ ) log
d
2

(
1

ϵ

)
,

which grows as ϵ→ 0 in the order of

(2ϵ)
log− 1

2

(
2d

ϵ

)
log

d
2

(
1

ϵ

)
,

concluding the proof.
□

2.3. Proof of Theorem 1.5, Optimal approximation order bi-activation networks:
low-dimensional subspaces. For clarity, first consider the simplest case of x ∈ χd

deff,e
, for

a known e ∈ I. Without loss of generality this can be the first deff dimensions of Rd being
nonzero, that is f ◦A(x) := f(Ax) for A ∈ Rd×deff given by

(2.7) A =



1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0
0 0 0 1
0 0 . . . 0 0


.

In this case we have f |χd
deff,e

= f ◦A. When we consider that the function we try to approximate

is of the form f ◦A, we get the following lemma.

Lemma 2.2 (Optimal approximation order bi-activation networks: low-dimensional single
subspace). For function f(x) with ||f ||Wn,∞([0,1]d) ≤ 1 where x is restricted to a single
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canonical subspace χd
deff,e

, there exists MCS ,bi−σ(a) formed as a feed-forward network with

CS = C6(d, n)ϵ
−deff/n elements a ∈ RCS for which

min
a∈RCS

max
x∈χd

deff,e

|f(x)−MCS ,bi−σ(a)(x)| ≤ ϵ

where C6(d, n) may depend on d and n, but not on ϵ.

We prove Lemma 2.2, by showing that ∥f ◦A∥Wn,∞[0,1]deff) ≤ 1 and then applying Theorem
1.3.

Proof. For a fixed d, n ∈ N, deff ∈ N such that deff < d and ϵ ∈ (0, 1). We consider without loss
of generality a f and A as prescribed, then by upper bounding ∥f ◦ A∥Wn,∞([0,1]deff ) by 1, we

can apply Theorem 1.3. We have for a n, with |n| = n that

esssup x∈[0,1]deff |Dn(f ◦A)(x)|

= esssup x∈[0,1]deff

∣∣∣∂n1
x1
∂n2
x2
. . . ∂

ndeff
xdeff

(f ◦A)(x)
∣∣∣

= esssup x∈[0,1]deff

∣∣∣∣∣∂n1
x1
∂n2
x2
. . . ∂

ndeff
−1

xdeff

d∑
i=1

∂xi
(f)(Ax) ·Aideff

∣∣∣∣∣
= esssup x∈[0,1]deff

∣∣∣∂n1
x1
∂n2
x2
. . . ∂

ndeff
−1

xdeff
∂xdeff

(f)(Ax) ·Adeffdeff

∣∣∣
= esssup x∈[0,1]deff

∣∣∣∂n1
x1
∂n2
x2
. . . ∂

ndeff
xdeff

(f)(Ax)
∣∣∣(2.8)

= esssup x∈[0,1]deff |Dn(f)(Ax)|
≤ esssup x∈[0,1]d |Dn(f)(x)| ≤ 1.

Here in (2.8) we use the argument above |n| times. Taking the maximum over n gives us that

∥f ◦A∥Wn,∞([0,1]deff ) ≤ 1.

To finish the proof we apply Theorem 1.3. □

The reason we introduce the previous lemma is that for all canonical subspaces of dimension
deff, we can assume without loss of generality that there exists a matrix A of the form of (2.7).

Proof of Theorem 1.5. For any d, n, deff ∈ N such that deff < d and ϵ ∈ (0, 1), we define f̂ :

[0, 1]d → R, as f̂ |χ̄d
deff,e

= f̃ , for all e ∈ I where f̃ is as in Lemma 2.2, and zero elsewhere. Then

for f̂ we have:

sup
x∈χ̄d

deff

|f̂(x)− f(x)| ≤
∑
e∈I

sup
x∈χd

deff,e

|f̂(x)− f(x)| ≤ 2deffdneff
n!

(
1

N

)n(
d

deff

)
.(2.9)

Setting

N = N(ϵ, d, deff, n) =


(
n!
(

d
deff

)
2deffdeff

n ϵ

)−1/n


and plugging N in (2.9), we get sup
x∈χd

deff

|f̂(x)− f(x)| ≤ ϵ. Furthermore, by Lemma 2.2 f̃ can be

implemented as a feed-forward network MCS ,bi−σ(a)(x). Then f̂ can be formed as the product
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of these networks, which results in a total feed-forward network MCM ,bi−σ(a)(x), where

CM =

(
d

deff

)
deff

n(N + 1)deff = C5(d, deff, n)ϵ
−deff/n,

which finishes our proof. □

Remark 2.3. Although the networks in the case of Lemma 2.2 and Theorem 1.5 have the
same ϵ functional dependence in their number of parameters, the total size of the network CS
and CM will be different, as they also depend in a different way on d, deff and n.

3. Conclusions

We have shown that bi-activation networks, which use both the ReLU and x2 as activa-
tion functions, have greater approximation power than ReLU networks. By repurposing a
proof of [16] for ReLU networks, we have derived upper bounds for the number of parameters
needed by bi-activation networks to approximate functions in the unit ball of the Sobolev space
Wn,∞([0, 1]d) achieving the optimal order O(ϵ−d/n) number of parameters as lower bounded by
[6]. We also extended our result to analytic functions on [0, 1]d for yet superior ϵ dependence
and to low-dimensional subspaces to overcome the curse of dimensionality.

Natural extensions of these results are 1) to determine if a feedforward, or another network,
with a single nonlinear activation can achieve the optimal order O(ϵ−d/n) number of parameters,
and 2) to consider further low-complexity models of f(x) beyond the union of subspaces, see
for instance the nested structure considered in [14].
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Appendix

Proof of Lemma 2.1. Begin by defining a partition of unity ϕm on the domain [0, 1]d:∑
m

ϕm(x) ≡ 1, x ∈ [0, 1]d

Here m = (m1, . . . ,md) ∈ {0, 1, . . . , N}d, and ϕm is defined as

ϕm(x) =

d∏
k=1

ψ
(
3N
(
xk − mk

N

))
,

where

ψ(x) =


1, |x| < 1

0, 2 < |x|
2− |x|, 1 ≤ |x| ≤ 2.

Furthermore, note that ||ψ||∞ = 1 and ||ϕm||∞ = 1 for all m, and that

supp ϕm ⊆
{
x :

∣∣∣∣xk − mk

N

∣∣∣∣ < 1

N
∀k
}
.

For any m ∈ {0, ..., N}d, consider the degree−(n − 1) Taylor polynomial for the function f
at x = m/N :

Pm(x) =
∑

n:|n|<n

Dnf

n!

∣∣∣∣
x=m/N

(
x− m

N

)n
,

with the usual conventions n! =
∏d

k=1 nk! and (x− m
N )n =

∏d
k=1

(
xk − mk

N

)nk . Now define an
approximation to f by

f1 =
∑

m∈{0,...,N}d

ϕmPm.

We bound the approximation error using the Taylor expansion of f :

|f(x)− f1(x)| =

∣∣∣∣∣∑
m

ϕm(x)
(
f(x)− Pm(x)

)∣∣∣∣∣
≤

∑
m:|xk−mk/N |<1/N ∀k

|f(x)− Pm(x)|
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≤ 2d max
m:|xk−mk/N |< 1

N ∀k
|f(x)− Pm(x)|

≤ 2ddn

n!

(
1

N

)n

max
n:|n|=n

esssup x∈[0,1]d |Dnf(x)|

In the second step, we used the support property for ϕm and the uniform bound on its
supremum norm. In the third step, we used the observation that any x ∈ [0, 1]d belongs to the
support of at most 2d functions ϕm, in the fourth a standard bound for the Taylor remainder.

Note that, the coefficients of the polynomials Pm are uniformly bounded for all f :

Pm(x) =
∑

n:|n|<n

am,n

(
x− m

N

)n
, |am,n| ≤ 1.

Expanding f1 as follows

f1(x) =
∑

m∈{0,...,N}d

∑
n:|n|<n

am,nϕm(x)
(
x− m

N

)n
.

completes the proof.
□
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